
 1

A framework for implementing extended transactions

M. C. Little†, S. K. Shrivastava‡ and S. M. Wheater†

†HP Arjuna Labs, Newcastle upon Tyne, England,

‡Computing Science Department, University of Newcastle, Newcastle upon Tyne, England

1. Introduction

Structuring certain applications from long-running transactions can reduce the amount

of concurrency within an application or in the event of failures require work to be

performed again, and hence adversely affect application performance. For example,

there are certain classes of application where it is known that resources acquired

within a transaction can be released “early”, rather than having to wait until the

transaction terminates; in the event of the transaction rolling back, however, certain

compensation activities may be necessary to restore the system to a consistent state.

Such compensation activities, which may perform forward or backward recovery, will

typically be application specific, may not be necessary at all, or may be more

efficiently dealt with by the application.

There are a number of different extensions to the standard transaction model that have

been proposed to address specific application needs, that may not be easily or

efficiently addressed through the use of traditional transactions:

• Nested transactions: permits a finer control over recovery and concurrency [1].

The outermost transaction of such a hierarchy is referred to as the top-level

transaction. The permanence of effect property is only possessed by the top-level

transaction, whereas the commits of nested transactions (subtransactions) are

provisional upon the commit/abort of an enclosing transaction.

• Type specific concurrency control: concurrent read/write or write/write operations

are permitted on an object from different transactions provided these operations

can be shown to be non-interfering [2].

• Independent top-level transactions: with this model it is possible to invoke a top-

level transaction from within another (possibly deeply nested) transaction [3]. If

the logically enclosing transaction rolls back, this does not lead to the rollback of

the independent top-level transaction, which can commit or rollback

independently. In the event that the enclosing transaction rolls back, compensation

may be required, but this is typically left up to the application.

• Structured top-level transactions: long-running top-level transactions can be

structured as many independent, short-duration top-level transactions [4]. This

allows an activity to acquire and use resources for only the required duration. In

the event of failures, to obtain transactional semantics for the entire duration may

require compensations for forward or backward recovery.

What this range of extended transaction models illustrate is that a single model is not

sufficient for all applications. Therefore, is it possible to develop a framework within

which all of these models can be supported, and also facilitate the development of

other models? This was the question asked by the Object Management Group when it

began its work on attempting to standardise extended transaction models. In this paper

 2

we shall given an overview of the results of the work we performed with IBM, Iona

and others in producing the final Activity Service OMG specification that attempts to

answer that question [5].

2. The activity framework

The framework to be outlined provides a low-level infrastructure to support the

coordination and control of abstract, application specific entities. These entities

(activities) may use ACID transactions, they may use weaker forms of serializability,

or they may not be transactional at all; the framework is only concerned with their

control and co-ordination, leaving the semantics of such activities to the application

programmer. If the activities use transactions, then the framework implementation

will ensure that transaction contexts are managed correctly, e.g., contexts flow across

execution environments and transactions that are begun within the scope of an activity

are terminated before the activity terminates. A very high level view of the role of the

Activity Service is shown in Figure 1.

Action Signal Set

A pplication Framework

Activity Service Interfaces

Activity Service Implementation

Persistence

Service

Logging

Service

etc.

U nderlying Implementation Platform

A pplication

Component

O bject

Invocation

A ction

T ransaction

Service

Signal Set Activity

C oordinator

etc.

Figure 1: The role of the Activity Service.

An activity is a unit of (distributed) work that may, or may not be transactional.

During its lifetime an activity may have transactional and non-transactional periods.

An activity is created, made to run, and then completed. The result of a completed

activity is its outcome, which can be used to determine subsequent flow of control to

other activities. Activities can run over long periods of time and can thus be

suspended and then resumed later.

Demarcation messages are communicated to entities (Actions) registered with an

activity through Signals. Signals can be used to infer a flow of control during the

execution of an application. For example, the termination of one activity may initiate

the start/restart of other activities in a workflow-like environment.

An activity may run for an arbitrary length of time, and may use ACID transactions at

any point during its lifetime. It was extremely important from an industrial point of

view that this framework could work with existing transactional systems. These ACID

 3

transactions may be provided by an OTS-compliant transaction service

implementation. For example, consider Figure 2, which shows a series of connected

activities co-operating during the lifetime of an application. The solid ellipses

represent transaction boundaries, whereas the dotted ellipses are activity boundaries.

Activity A1 uses two top-level transactions during its execution, whereas A2 uses

none. Additionally, transactional activity A3 has another transactional activity, A3’

nested within it. The Activity Service is responsible for distributing both the activity

and transaction contexts between execution environments in order that the hierarchy

can be fully distributed.

A1 A2

A3

A4

A5

tim e

A3’

Figure 2: Activity and transaction relationship.

Just as a thread of control may require transactional and non-transactional periods and

can suspend and resume its transactionality, so too may it require periods of non-

activity related work. Thus, it is possible for an activity thread to perform some work

outside the scope of the activity before returning to activity related work. In the

example diagram above, if the thread performing activity A3’ decided to perform

some non-activity related work, it could do so outside the scope of A3’ and A3.

Importantly for application consistency, tt is not possible to suspend an activity

without suspending all of its enclosed transactions. In addition, suspending a

transaction which has enclosed activities will also suspend those activities.

2.1 Activity coordination and control

An activity may decide to transmit activity specific data (Signals) to any number of

other activities at specific times during its lifetime, e.g., when it terminates. The

information encoded within a Signal can be arbitrary, and will depend upon the

implementation of the extended transaction model. To drive the activity interactions

an activity coordinator is associated with each activity. Activities that require to be

informed when another activity sends a specific Signal can register with that activity’s

coordinator. The coordinator’s role is to send Signals to all registered participants and

to deal with the outcomes generated.

Importantly, the implementation of the coordinator will depend upon the type of

extended transaction model being used. For example, if a Sagas type model is in use

[6] then a compensation Signal may be required to be sent to activities if a failure has

happened, whereas a coordinator for a strict transactional model may require to send a

 4

Signal informing participants to rollback. One of the keys to the extensibility of this

framework is the Signal Set whose implemented behaviour is peculiar to the kind of

extended transaction. The Signal Set is essentially a Signal factory that produces

Signals that are sent to Actions and processes the results: it is the coordination logic.

Similarly, the behaviour of an Action will be peculiar to the extended transaction

model of which it is a part.

Therefore, to enable the coordinator to be configurable for different transaction

models, the coordinator delegates all Signal control to a Signal Set. The intelligence

about which Signal to send to an activity is hidden within a Signal Set and may be as

complex or as simple as is required. The coordinator itself is therefore extremely

simple and generic, i.e., a single coordinator implementation can be used for all

extended transaction implementations.

As new types of extended transaction emerge, new Signal Set instances and associated

Actions and Signals will be created. This allows a single implementation of this

framework to serve a large variety of extended transaction models, each with its own

action and Signal Set implementations. The framework implementation will not need

to know the behaviour which is encapsulated in the actions and Signal Sets it is given,

merely interacting with their opaque interfaces in an entirely uniform and transparent

way.

2.2 Composite activities

An activity which contains component activities, may impose a requirement on the

Activity Service implementation for managing these component activities. It may be

necessary to determine whether these component activities worked as specified or

failed and how to map their (non-) completion to the enclosing activity’s outcome.

This is true whether the activities are strictly parallel, strictly sequential or a complex

structure. In general, an activity that needs to co-ordinate the outcomes of component

activities has to know what state each component activity is in, i.e., which are active,

which have completed and what their outcomes were, and which activities failed to

complete.

Another activity may therefore be required to handle the sub-activity outcomes so that

control flows can be made explicit. This activity determines the collective outcome of

the component activities in the light of the various component failure and success

situations. The activity framework does not specify how the activities should be

coordinated, only providing interfaces for coordination to occur. The coordination

may therefore be performed in a manner most suitable to the application or extended

transaction model. For example, a scripting language may be required to assist the

application programmer in a workflow-like manner [7].

2.3 Activity failures

The failure of an individual activity may produce application specific inconsistencies

depending upon the type of activity:

 5

• if the activity was involved within a transaction, then any state changes it may

have been making when the failure occurred will eventually be recovered

automatically by the transaction service.

• if the activity was not involved within a transaction, then application specific

compensation may be required.

• an application that consisted of the (possibly parallel) execution of many activities

(transactional or not) may still require some form of compensation to “recover”

committed state changes made by prior activities.

Rather than distinguish between compensating and non-compensating activities, we

consider that the compensation of the state changes made by an activity is simply the

role of another activity. A compensating activity is simply performing further work on

behalf of the application. Just as application programmers are expected to write

“normal” activities, they will therefore also be required to write “compensating”

activities, if such are needed. In general, it is only application programmers who

possess sufficient information about the role of data within the application and how it

has been manipulated over time to be able to compensate for the failure of activities.

3. Using the framework

Although most effort has been concentrated on the development of the generic

framework, there has been initial work on using it to implement specific extended

transaction models. This includes a Sagas-like model [6], where coordination of top-

level transactions occurs, and an implementation of Open Nested Transactions [5].

Preliminary use of this framework has shown that it can support both of these

extended models successfully. In order to determine whether the framework can

support other models we intend to use it in a number of environments that require

different types of extended transaction implementations. If deficiencies with the

framework appear then we shall feed them back into the original OMG specification.

4. References

[1] J. E. B. Moss, “Nested Transactions: an approach to reliable distributed computing”, Ph.D.

Thesis 260, MIT, Cambridge, MA, April 1981.

[2] P. M. Shwarz and A. Z. Spector, “Synchronizing Shared Abstract Types”, ACM Transactions

on Computer Systems, Vol. 2, No. 3, August 1984, pp. 223-250.

[3] B. Liskov and R. Scheifler, “Guardians and actions: linguistic support for robust distributed

programs”, ACM TOPLAS, Vol. 5, No. 3, July 1983, pp. 381-404.

[4] Nortel, supported by the University of Newcastle upon Tyne, “OMG document bom/98-03-

01”, submission for the OMG Business Object Domain Task Force (BODTF): Workflow

Management Facility, 1998.

[5] OMG, Additional Structuring Mechanisms for the OTS Specification, September 2000,

document orbos/2000-04-02.

[6] H. Garcia-Molina and K. Salem, “Sagas”, Proceedings of the ACM SIGMOD International

Conference on the Management of Data, 1987.

[7] G.Weikum, H.J.Schek, “Concepts and Applications of Multilevel Transactions and Open

Nested Transactions”, in Database Transaction Models for Advanced Applications, ed. A.K.

Elmagarmid, Morgan Kaufmann, 1992.

