Transactional Web Services
Programmer’s API

Document version: 0.2.1 September 03, 2007
BA Framework version: 0.2.1 September 03, 2007

Maciej Machulak
m.p.machulak@ncl.ac.uk / mmachulak@redhat.com
University of Newcastle upon Tyne
JBoss, a division of Red Hat

Table of Contents

L INEFOTUCTION ... r e bbb bt b et b bt b e nen e 5
1.1 ACKNOWIEAGEMENTS ...ttt sttt ettt et s e et et e e sae e st e beeneeseesteeneeseeseeeneenneas 5
1.2 DOCUMENTALION ...ttt bbbttt bbbt s ettt b bbb eneere s 5

2 BUSINESS ACHVILY FraMEWOIKcviiiiiiiii ettt sttt seesreeneenre s 5
2.1 Programmer’™s APL......o ettt e e re et e e nreeanes 6
B L1 T o SRS 7
2.3 IMPIEMENTATION.cviiiitiieee bbbttt bbbt b bbb e e e ere s 7

3 Transactional Web Services Metadatacocorviiiiiieiiiiieiee e 7
3.1 ANNOLALION: @ B ASEIVICE.eeteeiieee et e eee ettt e e e et e e ettt e e s s ta et eteeesssaser s breeeeeessssssrrbreeeeeessnians 7

3.2, L DESCIIPTION .ttt bbbttt bbb 7
KT 1= 1 T3-SR 8
KT T 1111 o] LSS 8
3.2 ANNOLALION: @BAMELNOGovveeeieeie ettt et ettt e e e e e s et eereeessseebrrereeeesseaaans 9
3.2, L DESCIIPTION .ttt b b sttt b bt r e 9
KT 1= 1 1TSS 9
KB T 1111] [S USRS 10
3.3 Annotation: @BACOMPIEIEUBYccouviiiieii et 10
3.3 L DESCIIPLION .ttt bbbttt b bt b n e 10
KB L 1 14T] T PSSR 12
KT I T 1111] [TS ORPRS 13
3.4 Annotation: @BACOMPENSALEABYccceeiiiiiiiicie e 13
3L, L DESCIIPTION .ttt et b bbbttt b b b n e r e 13
KRR L 14T] TSSOSO 15
KR T 1111] [S USRS 16
3.5 ANNOLALION: @BAPAIAIM ...ttt et e ettt ee e e s e s e et eeessseebrbeeeteeesssasrrrreeeessssnaans 16
3.5, L DESCIIPLION ..ttt bbbttt bt n e n e n e 16
3.5.2 DEIINITIONS ..ottt ettt st sbe e re e teste et e teenaenrenreenaenre s 17
KRR TC I T 1111 o] [USRS 17
3.6 ANNOLALION: @BARESUIL ...ttt ettt et e e e s e s et eeessse et b e et e eesssaserbrreeeeesssnaes 17
3.8. L DESCIIPLION ..ttt bbbttt b e n e 17
3.6.2 DEIINITIONS ...ttt et e st e e st e e se e teste e e e saeeneenaenreenaenre s 18

B S B . 4 1] o] S 18

3.7 Annotation: @BADAtaAMaNAgEMENTc.eeiiiieiire e nnea 18
BT L DESCIIPLION ..ttt bbbttt b bbbt nes 19
372 DEFINITIONS ..ottt 19
G B . 4 1]] S 19

4 Data Manager IMELNOUSc..oviiiiiiieie e 19

AL PUL() cveneeeeeeet ettt bRt e R R R R R bR Rttt b bbb e n e ene s 20
g I Tt) o o PSP S 20
A G 1111] - ST 21

A2 GEL() c.vereereeieeie ettt R R R Rt e bt b n e n e ne s 21
4.2. 1 DESCIIPTION ...ttt bbb b bbbttt bbbt ens 21
A 1] 0] L= TSRS 22

LR T 1] o] 1= ST 22
B RETEIEINCES ...ttt bbbt b 22

Disclaimer

Business Activity framework is an on-going research project and is still under heavy development.
The current version of framework is intended for tests only and should not be used in production
environments. Information about future releases, changelog, discovered bugs, new functionality and
all other information directly related to the framework can be found on the framework’s website.
Questions and remarks concerning the framework can be sent directly to the framework’s author or
posted to the JBoss Transactions Developer Forum.

1 Introduction

This document describes the programmer’s APl of the Business Activity Framework. It provides
information about metadata that can be used on Web Services so that they can participate in Business
Activities. It also describes operations that the programmer may use to increase the flexibility of data
management in business applications. Last section of this document presents two examples of Web
Services that make use of designed set of metadata and additional operations to participate in Business
Activities.

1.1 Acknowledgements

Jonathan Halliday (jhalliday@redhat.com) has provided a valuable technical input into development
of the Business Activity Framework.

1.2 Documentation

All documentation directly related to the Business Activity framework can be found on the website of
this framework [1]. More information concerning transactional Web Services can be found in [3] and
[4]. Questions, requests and comments are more than welcome and can be directed to the author of the
framework or posted to the JBoss Transactions Developer Forum [8].

2 Business Activity framework

At this moment writing transaction-aware Web Services with accordance to the Business Activity
model [4] is relatively problematic and requires a lot of support from business programmers.
Developers need to manually wire up original services with their compensation actions and must
ensure the correctness of those links (e.g. in terms of data that needs to be shared). Moreover, it is
necessary to follow transaction-related patterns where a developer must code not only the business
logic but the participant as well. The latter one is an entity, which is capable of responding to
transaction protocol messages (such as complete, compensate or close messages). Typically, a third
component is also developed. This component usually links participants with the business logic and is
often referred to as the manager.

The proposed annotation-based Java framework significantly facilitates development of transaction-
aware Web Services and releases programmers from mixing transaction-related code with business
logic of their applications. Developers do not need to write custom participants and managers and do
not have to concern themselves with any of the low level details of transaction processing
mechanisms. They may use simple annotations to enrich Web Services with support for participation
in Business Activities. With a few declarative statements, users may configure the relationship
between units of work and their completion or compensation tasks. The framework manages all
necessary aspects of the execution of those tasks, ensuring a reliable and consistent transaction
outcome.

Annotations have intuitive and reasonable default values to release the developer from the necessity of
specifying all required annotation member values explicitly. Those annotations are sufficient in most
scenarios, where Web Services need to be exposed as Business Activity tasks. To extend capabilities

of the framework and cover all needs of business developers, the framework additionally provides a
fully flexible data management mechanism for reliably storing arbitrary data. Such data can be stored
during original Web Service invocation and is transparently made available during completion or
compensation actions. It can be used to either correctly complete the work or restore the prior state.
Such flexible data management is provided with the use of annotations and additional operations.

2.1 Programmer’s API

The API of the Business Activity framework consists of metadata (Java annotations) and two
additional operations. The annotation-based part of the API has been designed following the
conventions proposed by the JSR-181 specification [5] for exposing EJB components as Web
Services. It consists of the following annotations:

= @BAService — marks a class as the one that contains method exposed as Business Activity
tasks; specifies common completion-related and compensation-related information for a group
of services (class);

= @BAMethod — specifies the service in terms of its state management and the agreement
protocol the service wants to participate in;

= @BACompletedBy — specifies the completion action and the type of completion for a single
service (method);

= (@BACompensatedBy — specifies the compensation action and the type of compensation for a
single service (method);

= @BAParam — annotates the service’s parameter so that it can be processed by the compensation
mechanism and used when executing compensation action;

= @BAResult — annotates the service’s return value to be processed by the compensation
mechanism and used when executing compensation action;

= (@BADataManagement — annotates the data manager object to enable transparent dependency
injection.

Apart from the annotations, the programmer may use put(id,Object) and get(id) operations,
which are invoked on the previously mentioned data manager. Those operations enable storing and
retrieving any data, which might be used for either completion or compensation.

A comprehensive description of the Business Activity Framework API is presented in sections 3 and 4
of this document.

To expose a Web Service method as a transaction-aware Web Service, the business programmer must
mark it with previously mentioned annotations as shown in the example in section 5. Typically using
only annotations is enough. The framework will be able to transparently apply all necessary
transaction mechanisms according to the requirements specified by the business programmer. If more
flexibility in data management needs to be achieved, the programmer may use additional methods
(put) and get()) to store and retrieve any data that could be potentially used during either
completion or compensation. The completion and compensation actions can only have their
parameters annotated properly so that middleware mechanisms can match them with any data, which
has been stored during the execution of the original service. Additionally, support for numerical
identifiers is provided so that completion or compensation actions do not need to have any annotations

specified. Such feature is useful when using third-party services as completion or compensation
actions.

2.2 Design

Description of the framework’s design and implementation will been presented in the Business
Activity Framework Maintenance Guide [2].

2.3 Implementation

Business Activity framework has been built on top of the XTS (XML Transaction Service)
component, which is a part of the JBoss Transaction Service [6]. It uses JBoss AOP framework [7] to
transparently apply transactional middleware mechanisms into Web Services. Implementation specific
parts have been well separated and JBoss AOP can be easily exchanged with any other framework
which is capable of intercepting calls to components exposed as Web Services.

3 Transactional Web Services Metadata

The core API of the Business Activity framework is based on metadata — Java annotations. To enrich
Web Services with support for their participation in Business Activities, those services can be simply
annotated. No additional code has to be written. Most annotations have intuitive and reasonable
default values to release the developer from the necessity of specifying all required annotation member
values explicitly. Next sections of this document present designed annotations in more details.

3.1 Annotation: @BAService
Qualified name: org. jboss.txbridge.ba.annotation.BAService

Annotation type: optional

Target element: class

3.2.1 Description

This annotation marks a class, which has methods that are exposed as transaction-aware Web Services.
It specifies common completion-related and compensation-related information that will be used by all
those methods. Single methods may override those values using members of the @BACompletedBy
and @BACompensatedBy annotation.

Member-value Meaning Default

serviceClass Class that contains the | Empty.
method specified as the
completion or compensation
task.

ejblInterface Interface of the EJB that | Empty.
contains the completion or
compensation method.

jndiName

JNDI name of the EJB that
contains the completion or
compensation method.

Empty string.

providerURL URL of the JNDI service at | Empty string.
which the EJB should be
looked up.

wsdl URL of the WSDL, which | Empty string.

(*Test implementation*)

describes the completion or
compensation action.

namespace

(*Test implementation™)

Target namespace used by
the completion or
compensation service.

Empty string.

serviceName

(*Test implementation®)

Name of the completion or
compensation service.

Empty string.

3.2.2 Definitions

Annotation definition:

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface BAService

{

public Class[] serviceClass() default {};
public Class[] ejblnterface() default {};
public String jndiName() default "*;
public String providerURL() default "*;
public String wsdl() default "*;

public String namespace() default ;

public String serviceName() default ;

3.2.3 Example

Java source code:

@webService(name="Hotel'")

@BAService(serviceClass=HotelBAImpl.class,
ejblnterface=HotelBA_class,
JndiName=""bademo/HotelBAlmpl/remote')

public class Hotellmpl implements Hotel

{
/7 ...

}

3.2 Annotation: @BAMethod
Qualified name: org. jboss.txbridge.ba.annotation.BAMethod
Annotation type: required

Target element: method

3.2.1 Description

This annotation is used to mark a method that is exposed as a Web Service so that it can be recognised
as the one that needs to participate in a Business Activity. It specifies the agreement protocol the
service is willing to participate in. This agreement protocol is the equivalent of a commit protocol and
enables different services to reach a consensus in a certain business activity. The WS-BusinessActivity
specification [4] defines 2 protocols — Business Agreement with Participant Completion and Business
Agreement with Coordinator Completion. This annotation also defines the service in terms of its state
management (whether it changes any data or is read-only). If the service is read-only then it does not
require compensation action to be specified — the participant associated with such service simply exits
the Business Activity after it is able to inform the coordinator that all the work has been completed. If
the service modifies any data (or simply provides information which is transaction-dependent) then it
has to have a compensation action specified.

Member-value | Meaning Default

agreement Specifies the agreement | AgreementType.PARTICIPANT_COMPLETION
protocol the service wants
to participate in. This
member value takes
elements of the
AgreementType enum.

type Specifies the service in | MethodType.MODIFY
terms of its state
management. This member
value takes elements of the
MethodType enum.

3.2.2 Definitions

Annotation definition:

@Target(ElementType.METHOD)

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface BAMethod

{
public AgreementType agreement() default AgreementType.PARTICIPANT_COMPLETION;
public MethodType type() default MethodType.MODIFY;

AgreementType definition:

public enum AgreementType

{

PARTICIPANT_COMPLETION,
COORDINATOR_COMPLET ION

MethodType definition:

public enum MethodType

{
READONLY,

MODIFY

3.2.3 Example

Java source code:

@WebMethod

@BAMethod(AgreementType.PARTICIPANT_COMPLETION,MethodType.READONLY)

public String getHotellnfo()

{
/7 ..

}

3.3 Annotation: @BACompletedBy

Qualified name: org. jboss.txbridge.ba.annotation.BACompletedBy

Annotation type: optional

Target element: method

3.3.1 Description

This annotation provides necessary information about the completion action. Member values of this
annotation override those specified by the @BAService annotation.

Member-value Meaning Default

value Name of the method that is | None
used as a completion action.

serviceClass Class that contains the | Empty.

method specified as the
completion task.

10

ejbinterface

Interface of the EJB that
contains the completion
method.

Empty.

jndiName

JNDI name of the EJB that
contains the completion
method.

Empty string.

providerURL

URL of the JNDI service at
which the EJB that contains
the completion method
should be looked up.

Empty string.

wsdl

(*Test implementation*)

URL of the WSDL, which
describes the completion
action.

Empty string.

namespace

(*Test implementation™)

Target namespace used by
the completion service.

Empty string.

serviceName

(*Test implementation®*)

Name of the completion
service.

Empty string.

mode

Mode of the completion —
whether it is done locally, on
an EJB or is remote. This
member value takes elements
of ExecutionMode enum.

ExecutionMode.EJB

match

Required type of parameters
match for the completion
action. By default original
method must provide enough
data to fill in argument list
for the compensation action.

ParameterMatch.STRICT

single

If true than completion
action for this method will be
invoked only once for each
transaction (using data
provided by the last
execution of this method).

false

order

NOT YET IMPLEMENTED

ExecutionOrder.NORMAL

11

type Type of the data match.
Specifies what data needs to
be remembered by the data
management mechanism.
This member takes elements
of the DataMatch enum.

DataMatch.RETURN_VALUE

3.2.2 Definitions

Annotation definition:

@Target(ElementType .METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface BACompletedBy
{
public String value();
public Class[] serviceClass() default {};
public Class[] ejblnterface() default {};
public String jndiName() default "*;
public String providerURL() default "*;
public String wsdl() default "*;
public String namespace() default "';
public String serviceName() default "*;
public boolean single() default false;

public ParameterMatch match() default ParameterMatch.STRICT;
public ExecutionOrder order() default ExecutionOrder.NORMAL;
public DataMatch type() default DataMatch.RETURN_VALUE;
public ExecutionMode mode() default ExecutionMode.EJB;

ExecutionMode definition:

public enum ExecutionMode

{
EJB,
POJO,
DI
}

ParameterMatch definition:

public enum ParameterMatch
{

STRICT,

ALLOW_NULL

12

ExecutionOrder definition:

public enum ExecutionOrder

{
NORMAL,
FIRST,
LAST

by

DataMatch definition:

public enum DataMatch

{
RETURN_VALUE,
PARAMETERS_MATCH,
CUSTOM

+

3.3.3 Example

Java source code:

@WebMethod

@BAMethod (AgreementType .COORDINATOR_COMPLETION,MethodType.MODIFY)

@BACompletedBy(value="checkout", type=DataMatch.CUSTOM)
public Integer bookRoom(String user,String pass, Integer roomNumber)

{
/7 ...

}

3.4 Annotation: @BACompensatedBy
Qualified name: org. jboss.txbridge.ba.annotation.BACompensatedBy
Annotation type: optional

Target element: method

3.4.1 Description

This annotation provides necessary information about the compensation action. Member values of this
annotation override those specified by the @BACompensation annotation.

Member-value Meaning Default

value Name of the method that is | None
used for compensation.

13

serviceClass Class that contains the | Empty.
method specified as the
compensation task.

ejbinterface Interface of the EJB that | Empty.

contains the compensation
method.

jndiName

JNDI name of the EJB that
contains the compensation
method.

Empty string.

providerURL

URL of the JNDI service at
which the EJB that contains
the compensation method
should be looked up.

Empty string.

wsdl

(*Test implementation™)

URL of the WSDL, which
describes the compensation
action.

Empty string.

namespace

(*Test implementation®)

Target namespace used by
the compensation service.

Empty string.

serviceName

(*Test implementation®)

Name of the compensation
service.

Empty string.

mode

Mode of the compensation —
whether it is done locally, on
an EJB or is remote. This
member value takes elements
of ExecutionMode enum.

ExecutionMode.EJB

match

Required type of parameters
match for the compensation
method. By default original
method must provide enough
data to fill in argument list
for the compensation action.

ParameterMatch.STRICT

single

If true than compensation
action for this method will be
invoked only once for each
transaction (using data
provided by the Ilast
execution of this method).

false

14

order NOT YET IMPLEMENTED

ExecutionOrder.NORMAL

type Type of the compensation.
Specifies what data needs to
be remembered by the data
management mechanism.
This member value takes
elements of the DataMatch
enum.

DataMatch.RETURN_VALUE

3.4.2 Definitions

Annotation definition:

@Target(ElementType .METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface BACompensatedBy
{
public String value();
public Class[] serviceClass() default {};
public Class[] ejblnterface() default {};
public String jndiName() default "';
public String providerURL() default "*;
public String wsdl() default '*;
public String namespace() default "';
public String serviceName() default "*;
public boolean single() default false;

public ParameterMatch match() default ParameterMatch_STRICT;
public ExecutionOrder order() default ExecutionOrder _NORMAL;
public DataMatch type() default DataMatch.RETURN_VALUE;
public ExecutionMode mode() default ExecutionMode.EJB;

ExecutionMode definition:

public enum ExecutionMode

{
EJB,
POJO,
DIl
}

ParameterMatch definition:

public enum ParameterMatch
{

STRICT,

ALLOW_NULL

15

ExecutionOrder definition:

public enum ExecutionOrder

{
NORMAL,
FIRST,
LAST

}

DataMatch definition:

public enum DataMatch

{
RETURN_VALUE,
PARAMETERS_MATCH,
CUSTOM

+

3.4.3 Example

Java source code:

@webMethod

@BAMethod(AgreementType .PARTICIPANT_COMPLETION,MethodType.MODIFY)
@BACompensatedBy(value="cancelRoom", type=DataMatch.CUSTOM)

public Integer bookRoom(String user,String pass, Integer roomNumber)

{
/7 ...

}

3.5Annotation: @BAParam
Qualified name: org. jboss.txbridge.ba.annotation.BAParam
Annotation type: optional

Target element: parameter

3.5.1 Description

This annotation marks a parameter so that it is stored by the framework data management mechanisms
and can be used during completion or compensation (either as argument for the service or as additional
object, which might be retrieved within the completion/compensation method). This annotation should
be used if data match type of any service is DataMatch.CUSTOM.

Member-value Meaning Default

value Unique identifier of the | None
method’s argument that is to
be stored. The identifier
must be unique at a single
method’s scope.

16

3.5.2 Definitions

Annotation definition:

@Target(ElementType .PARAMETER)
@Retention(RetentionPolicy.RUNTIME)
@Documented

public @interface BAParam

{
String value(Q);

}

3.5.3 Example

Java source code:

@webMethod

@BAMethod (AgreementType .PARTICIPANT _COMPLETION,MethodType.MODIFY)
@BACompensatedBy(value=""cancelMeal", type=DataMatch.CUSTOM)

public MealOrder orderMeal (@BAParam(*'user')Integer userld, Integer mealld)

{
/7 ..

¥
Compensation action:

@webMethod
public Integer cancelMeal (@BAParam(*'user™)Integer userld)

{
/7 ..

}

3.6 Annotation: @BAResult
Qualified name: org. jboss.txbridge.ba.annotation.BAResult
Annotation type: optional

Target element: method

3.6.1 Description

This annotation marks a method so that its return value is remembered by the framework data
management mechanisms and can be used during completion or compensation (either as argument for
the method or as additional object, which might be retrieved within the completion/compensation
method). This annotation should be used if data match type of any service is DataMatch.CUSTOM.

17

Member-value Meaning Default

value Unique identifier of the | None
method’s return value that is
to be remembered. The
identifier must be unique at
a single method’s scope.

3.6.2 Definitions

Annotation definition:

@Target(ElementType .METHOD)
@Retention(RetentionPolicy.RUNTIME)
@Documented

public @interface BAResult

{
String value();

}

3.6.3 Example

Java source code:

@webMethod
@BAMethod(AgreementType.PARTICIPANT_COMPLETION,MethodType.MODIFY)
@BACompensatedBy(value="cancelTicket",type=DataMatch.CUSTOM)
@BAResult(*'orderiD™)

public Integer bookTicket(@BAParam(*'user')Integer userld, Integer movield)

{
/7 ...

}
Compensation action:

@webMethod
public Integer cancelTicket(@BAParam(*'user'™)Integer userlid,
@BAParam(*'orderiID') Integer orderlid)

{
/7 ...

}

3.7 Annotation: @BADataManagement
Qualified name: org. jboss.txbridge.ba.annotation.BADataManagement
Annotation type: optional

Target element: field

18

3.7.1 Description

This marker annotation is used to tag the DataManager object so that it can be transparently injected
during runtime by the framework mechanisms. DataManager is used for storing and retrieving
arbitrary data, which should be shared between the original service and its completion or
compensation actions.

3.7.2 Definitions

Annotation definition:

@Target(ElementType.FIELD)
@Retention(RetentionPolicy.RUNTIME)
@Documented

public @interface BADataManagement

{
}

3.7.3 Example

Java source code:

public class SomeClass

{
@BADataManagement
private DataManager dm;
// ...
}
4 Data Manager Methods

The Business Activity Framework supports storing arbitrary data, which is used by the original service
and might be potentially useful when invoking completion or compensation actions (either as
arguments of those services or within the business logic). Storing data from inside business methods
can be performed with the use of a DataManager component. This component also enables retrieving
data in the corresponding completion or compensation actions. DataManager is automatically
injected during runtime by the framework mechanisms.

Qualified name: org. jboss. txbridge.ba.datamgmt.DataManager
Usage: optional
DataManager interface definition:

public interface DataManager

{
public void put(Object objectld, Object object);
public Object get(Object objectld);

19

Usage example:

public class HotelBAImpl implements HotelBA
{

@BADataManagement
private DataManager dm;

@webMethod

@BAMethod (AgreementType.PARTICIPANT_COMPLETION,MethodType -MODIFY)
@BACompensatedBy(value="cancelMeal", type=DataMatch.CUSTOM)
@BAResult("id™)

public Integer orderMeal (@BAParam(‘'user')Integer userld, Integer mealld)

{
/7 .

dm.put(*'refund"”, refundvalue);
// ...
return orderld;

}

@wWebMethod
public void cancelMeal (@BAParam(*'user'™)Integer userld,@BAParam(*'id"™) Integer orderld)

{
/7 .

Integer refundValue = (Integer) dm.get("'refund");
if (refundvalue != null)

{
/7 ..

}
/7 ...

Following operations can be invoked on the data manager:
= put(id,Object)
= get(id)

The first one supports storing arbitrary objects with given identifiers. The other one is used in
completion/compensation tasks for retrieving objects with given identifiers. ldentifiers must be unique
at a method’s scope. Next sections of this document provide a more detailed description of those
methods .

4.1 put()

4.1.1 Description

This method can be used to store any data, which might be required by the completion/compensation
action. The completion/compensation method may need this data either as its arguments or may
retrieve them from inside its body. Any data that is stored must be given a unique identifier so that it
can be retrieved successfully. It is possible to use any objects as identifiers (i.e. String, Integer, etc).

20

Method signature:

public void put(Object objectID, Object object);

4.1.2 Example

Java source code:

public class HotelBAImpl implements HotelBA
{

@BADataManagement
private DataManager dm;

@WebMethod

@BAMethod (AgreementType . PARTICIPANT_COMPLETION,MethodType.MODIFY)
@BACompensatedBy(value="cancelMeal",type=DataMatch.CUSTOM)

public MealOrder orderMeal (@BAParam(*'user')Integer userld, Integer mealld)

{
//

dm.put(*'id"”,orderlD);
dm.put(*'bonusiID",bonusliD);
// ..

return mealOrder;

}

@WebMethod
public void cancelMeal (@BAParam(*'user') Integer userld,@BAParam(*'id'™) Integer orderld)

{
/7 ..

Integer bonusliD = (Integer) dm.get(‘'bonusiD");
if (bonusliD != null)

{
/7 ...

}
/7 ...

4.2 get()

4.2.1 Description

This method can be used to get any data, which is required by the completion/compensation action. It
is necessary for the completion/compensation action to know the identifiers, which were used when
storing data by the main method. This method returns null if the data manager does not have data with
the given identifier. This can be used to differentiate, whether the service has been executed as a
completion/compensation action or as a normal method.

Method signature:

public Object get(Object objectiD);

21

4.2.2 Example

Java source code:

public class HotelBAImpl implements HotelBA

{

@BADataManagement
private DataManager dm;

@webMethod

@BAMethod (AgreementType.PARTICIPANT_COMPLETION,MethodType -MODIFY)
@BACompensatedBy(value="cancelMeal", type=DataMatch.CUSTOM)

public MealOrder orderMeal (@BAParam(*'user')Integer userld, Integer mealld)

{

}

// ..
dm.put(id",orderlID);
dm._put(*'bonusiID",bonusliD);
// ...

return mealOrder;

@wWebMethod
public void cancelMeal (@BAParam(*'user'™)Integer userld,@BAParam(*'id"™) Integer orderld)

{

// ...
Integer bonusiID = (Integer) dm.get(“bonusiD");
if (bonusliD != null)
{
// ...

3
/7 ...

5 Examples

For examples, please refer to the Business Activity Framework Demo Application. Any questions
regarding the framework’s usage are welcome and can be directed to the author of the framework.
Questions can be also posted to the JBoss Transactions Developer Forum [8].

6 References

[1] Machulak M.P. Business Activity Framework. http://labs.jboss.com/jbosstm/baframework

[2] Machulak M.P. Business Activity Framework Maintenance Guide — to be released — September
2007.

[3] Little, M., J. Maron, and G. Pavlik, Java Transaction Processing: Design and Implementation,
Prentice Hall PTR, New Jersey, USA, 2004.

22

[4] WS-BusinessActivity Specification, version 1.0. August 2005.
http://www.arjuna.com/library/specs/ws-tx/WS-BusinessActivity.pdf.

[5] JSR 181: Web Services Metadata for the Java™ Platform, wversion 1.0. June 2005.
http://jcp.org/en/jsr/ detail?id=181

[6] Halliday J.J. et al. JBoss XML Transaction Service. http://labs.jboss.com/jbosstm/
[7] Khan K. et al. JBoss AOP. http://labs.jboss.com/jbossaop/

[8] JBoss Transactions Developer Forum. http://www.jboss.com/index.html?module=bb&op=
viewforum&f=164

23

